Moving beyond I.I.D.

Causal de Finetti and OOV Generalization

Siyuan Guo

Max Planck Institute for Intelligent Systems
University of Cambridge

April 18th, 2023

Figure 1: Pearl's Ladder of Causality

I.I.D.

Figure 2: Pearl's Ladder of Causality

Figure 3: Pearl's Ladder of Causality

I.I.D.

$$
i=1, \ldots, N
$$

Exchangeable

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a finite sequence of random variables. For any permutation π of $\{1, \ldots, n\}$, it satisfies:

$$
\begin{equation*}
\mathbb{P}\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right)=\mathbb{P}\left(X_{1}, \ldots, X_{n}\right) \tag{1}
\end{equation*}
$$

Then the finite sequence is exchangeable. Infinite exchangeable sequence if above holds for any $N \in \mathbb{N}$.

De Finetti

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be an infinite sequence of binary ${ }^{1}$ random variables. The sequence is exchangeable if and only if there exists a latent variable θ such that X_{1}, x_{2}, \ldots are conditionally i. i. d. given θ.

$$
\begin{equation*}
\mathbb{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\int \prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \theta\right) d \mu(\theta) \tag{2}
\end{equation*}
$$

[^0]
De Finetti

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be an infinite sequence of binary random variables. The sequence is exchangeable if and only if there exists a latent variable θ such that X_{1}, X_{2}, \ldots are conditionally i. i. d. given θ.

$$
\begin{equation*}
\mathbb{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\int \prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \theta\right) d \mu(\theta) \tag{3}
\end{equation*}
$$

Bayesian Model

- $\mathcal{D}=\left\{x_{1}, \ldots, x_{n}\right\}$
- Statistical Model $\mathcal{M}=\{P(\cdot \mid \theta) \mid \theta \in \mathcal{T}\}$
- Prior $\theta \sim \pi$

De Finetti Applications

Let $\left(X_{n}, Y_{n}\right)_{n \in \mathbb{N}}$ be an infinite exchangeable sequence of binary random variables. De Finetti representation theorem states that

$$
\begin{equation*}
\mathbb{P}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{y}_{n}\right)=\int \prod_{i=1}^{n} p\left(\mathbf{x}_{i}, \mathbf{y}_{i} \mid \theta\right) d \mu(\theta) \tag{4}
\end{equation*}
$$

Independent Causal Mechanism

The causal generative process of a system's variables is composed of autonomous modules that do not inform and do not influence each other.

$$
\begin{equation*}
\mathbb{P}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i} \underbrace{\mathbb{P}\left(x_{i} \mid \mathbf{P A}_{i}\right)}_{\text {causal conditional }} \tag{5}
\end{equation*}
$$

Example

Causal De Finetti

Let $\left\{X_{n}, Y_{n}\right\}_{n \in \mathbb{N}^{2}}$ be an infinite sequence of binary random variables.
The sequence is

- exchangeable, and
- $\forall n \in \mathbb{N}: Y_{[n]} \Perp X_{n+1} \mid X_{[n]}{ }^{3} \quad \rightarrow \quad$ "P(Y|X) $\Perp P(X) "$
if and only if there exists two independent latent variables θ, ψ such that X_{1}, X_{2}, \ldots are conditionally i. i. d. given θ and Y_{1}, Y_{2}, \ldots are conditional i. i. d. given ψ and its corresponding X_{i}.

$$
\begin{equation*}
\mathbb{P}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{y}_{n}\right)=\int \prod_{i=1}^{n} p\left(\mathbf{y}_{i} \mid \mathbf{x}_{i}, \psi\right) p\left(\mathbf{x}_{i} \mid \theta\right) d \mu(\theta) d \nu(\psi) \tag{6}
\end{equation*}
$$

[^1]
Disentangle the Latents

De Finetti:

Causal De Finetti:

Generalization

Out-of-Variable Generalization

Out-of-Variable Generalization

(B)
(A)
(c)

Out-of-Variable Generalization

Out-of-Variable Generalization

Out-of-Variable Generalization

Out-of-Variable Genralization

$$
\begin{aligned}
& \mathcal{D}:=\left(x_{1}, x_{2}, Y\right),\left(x_{2}, x_{3}\right) \\
& f_{S}\left(x_{1}, x_{2}\right)=\mathbb{E}\left[Y \mid x_{1}, x_{2}\right] \\
& f_{T}\left(x_{2}, x_{3}\right)=\mathbb{E}\left[Y \mid x_{2}, x_{3}\right]
\end{aligned}
$$

Figure 4: Toy example: (a) the blue box includes variables observed in the source environment, and the orange box those in the target environment. A directed edge represents a causal relationship between two variables. The goal is to improve the zero-shot (i.e., without additional data) prediction of Y in the target environment using the source environment.

Out-of-Variable Generalization

- Consider $Y=\phi\left(X_{1}, X_{2}, X_{3}\right)+\epsilon$
- Residual Distribution: $Y-f_{5}\left(X_{1}, X_{2}\right)$
- Moments of the residual distribution:

$$
\mathbb{E}\left[\left(Y-f_{S}\left(x_{1}, x_{2}\right)\right)^{n} \mid x_{1}, x_{2}\right]
$$

- Entangled interaction between noise ϵ and $\left.\frac{\partial \phi}{\partial x_{3}}\right|_{x_{1}, x_{2}, \mu_{3}}$

$$
\mathbb{E}\left[\left(Y-f_{s}\left(x_{1}, x_{2}\right)\right)^{n} \mid x_{1}, x_{2}\right]=\sum_{k=0}^{n}\binom{n}{k} \mathbb{E}\left[\epsilon^{k}\right]\left(\left.\frac{\partial \phi}{\partial x_{3}}\right|_{x_{1}, x_{2}, \mu_{3}}\right)^{n-k} \mathbb{E}\left[\left(x_{3}-\mu_{3}\right)^{n-k}\right]
$$

Out-of-Variable Generalization

- Consider $Y=\phi\left(X_{1}, X_{2}, X_{3}\right)+\epsilon$
- Residual Distribution: $Y-f_{S}\left(X_{1}, X_{2}\right)$
- Moments of the residual distribution:

- Entangled interaction between noise ϵ and $\left.\frac{\partial \phi}{\partial x_{3}}\right|_{x_{1}, x_{2}, \mu_{3}}$

When $n=3$:

$$
\mathbb{E}\left[\left(Y-f_{S}\left(x_{1}, x_{2}\right)\right)^{3} \mid x_{1}, x_{2}\right]=\left(\left.\frac{\partial \phi}{\partial x_{3}}\right|_{x_{1}, x_{2}, \mu_{3}}\right)^{3} \mathbb{E}\left[\left(x_{3}-\mu_{3}\right)^{3}\right]+\mathbb{E}\left[\epsilon^{3}\right]
$$

Experiments

Proposed

Marginal

Optimal

FineTune

Experiments

Conclusions

Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data

Siyuan Guo ${ }^{\text {a,b, }, ~}$, Viktor Tóth ${ }^{\text {a, }}$, Bernhard Schölkopf ${ }^{\text {b }}$, and Ferenc Huszàr ${ }^{\text {a }}$
${ }^{\text {a }}$ University of Cambridge; ${ }^{\text {b }}$ Max Planck Institute for Inteligent Systems

Out-of-Variable Generalization

Siyuan Guo ${ }^{* \dagger \xi} \quad$ Jonas Wildberger ${ }^{\dagger} \quad$ Bernhard Schölkopf ${ }^{\dagger}$

[^0]: ${ }^{1}$ De Finetti holds for categorical and continuous random variables.

[^1]: ${ }^{2}$ Can extend to multivariate version
 ${ }^{3}[n]:=\{1, \ldots, n\}$

